 The radius of curvat A. a spherometer 	ure of a spherical surface B. spectrometer	e is measured using C. screw gauge	D. slide callipers	
gravitational constant,	length are expressed as of speed of light and Plank'	s constant respectively, t	hen	
A. $x = 1/2, y = 1/2$	B. $x = 1/2$, $z = 1/2$	C. $y = 1/2$, $z = 3/2$	D. $y = +3/2$, $z = 1/2$	
	mula of electric field stre B. $MLT^{-3}A^{-1}$	ength is: C. $T^2 A^{-1}$	D. MLTA ⁻²	
another ball. If the ball	•		aximum height he throws en what wilt be the height	
attained by them A. 19.6 m	B. 9.8 m	C. 4.9 m	D. 2.45 m	
5. If the velocity time	graph of a body is a straig	ght line sloping downwa	rds, the body has	
A. acceleration	B. declaration	C. zero acceleration	D. constant acceleration	
6. Which one of the fol acceleration?	llowing equations represe			
A. $y = at$ 7. What is the magnitude of the velocity of the body when it is projected horizontally from a point above the ground after 0.2 seconds? A. $\sqrt{2}$ ms ⁻¹ B. $2\sqrt{2}$ ms ⁻¹ C. $3\sqrt{2}$ ms ⁻¹ D. $4\sqrt{2}$ ms ⁻¹				
	nd a tension of 25 N. Wh horizontal circle using 1		t which a body of mass 1	
A. 25 ms^{-1}	B. 5 ms ⁻¹	C. 75 ms ⁻¹	D. 10 ms ⁻¹	
9. An object tied to a piece of string is whirled in a vertical circle, at constant speed. The tention in the string is maximum at				
A. A	B. <i>B</i>	(B	
C. <i>C</i>	D. <i>D</i>	c	A	
 10. The maximum force of friction that comes into play is called A. limiting friction B. kinetic friction C. static friction D. minimum friction 11. A body of mass 5 Kg is raised vertically to a height of 10 m by a force of 170 N. The final velocity of the body is 				

velocity of the body is A. 15 ms^{-1} B. 17 ms^{-1} C. 20 ms^{-1} D. 22 ms^{-1}

12. A cyclist moving at a speed of 17.64 km/h describes a circle of radius 9.8 m. If the cyclist is held in balance, the co-efficient of friction between the tyre and the ground is A. 0.25 B. 0.29 C. 0.36 D. 0.35 13. Two bodies with masses m_1 and m_2 have equal kinectic energies. If P_1 and P_2 are their respective momenta, then $P_1 = P_2$ is C. $m_1^2 : m_2^2$ D. $\sqrt{m_1}$: $\sqrt{m_2}$ A. $m_1 : m_2$ B. $m_2 : m_1$ 14. In elastic collision, A. only energy is conserved B. only momentum is conserved D. none of these C. both energy and momentum is conserved 15. The velocity of a particle whose kinetic energy is equal to the rest energy is A. (1/2) C B. C C. $\sqrt{3/3}$ D. $\sqrt{3}$ C 16. The propeller of a ship makes 350 rev. while its speed increases from 200 rpm to 500 rpm. Then the time taken for this is A.1 min B. 1.2 minute C. 5.3 seconds D. 53 seconds 17. The K.E. needed to project a body from the earth's surface to infinity is C. 1/2 (mgR) B. 2 mgRD. 1/4 (mgR) A. mgR18. The distance of two planets from the sun are 10^{13} and 10^{12} meters respectively. The ratio of time period of these two planets is A. √10 **B**. 1/√10 C. 100 D. 10√10 19. Poisson ratio is the ratio of A. the linear strain to the lateral strain B. the lateral strain to the linear strain D. the lateral stress to the linear stress C. the linear stress to the lateral stress 20. Two wires L and M are of the same material and of the same length, but the diameter of L is twice that of *M* stretching force applied to *L* is four times that of M. Then the ratio of the elongation of L to that of M is A.1:4 **B**. 4 : 1 C.1:1 D. 2 : 1 21. Which of the substance breaks just beyond the elastic limit? A. Elastic B. Malleable C. Brittle D. Ductile 22. A stone of mass 16 kg is attached to a string 144-meter-long and is whirled in a horizontal circle. The maximum tension the string can stand is 16 N. The maximum velocity of revolution that can be given to the stone without breaking it will be

A. 12 ms^{-1} B. 14 ms^{-1}

D. 20 ms⁻¹ C. 16 ms⁻¹ 23. A vessel containing 0.1 m³ of air at 76 cm of Hg pressure is connected to an evacuated vessel of capacity 0.09 m³. The resultant air pressure is A. 20 cm of Hg B. 30 cm of Hg C. 40 cm of Hg D. 50 cm of Hg 24. Two gases A and B having the same temperature T, same pressure P and the same volume V are mixed. If the mixture is at the same temperature T and occupies a volume V, the pressure of the mixture is A.P B. 2P C. P/2D. 4P 25. A solid ball of metal has spherical cavity inside it. If the ball is heated, the volume of the cavity will A. increase B. decrease C. remain the same D. disappear 26. If the law of heat conduction is written in the form of Ohm's law, then the quantity similar to electrical resistance is B. Ad/ λ C. $A\lambda/d$ D. $d/A\lambda$ A. A/d λ 27. The work done from 250 cals of heat is B. 1045 joules A. 1045 ergs 045 watt D. 1045 N 28. The time taken by a particle executing S.H.M of period T to move the mean position to half the maximum displacement is C. T/8 A. T/2 B. T/4 D. T/12 29. Let g be the acceleration due to gravity at earth's surface and K be the rotational K.E. of the earth. Suppose the earth's radius decreases by 2%, then B. g decreases by 4% A. g decreases by 2% and K decreases by 4% and K increases by 2%C. g increases by 4% D. decreases by 4% and and K decreases by 4% K increases by 4% 30. A particle of mass m is hanging vertically by an ideal spring of force constant K. If the mass is made to oscillate vertically, its total energy is A. maximum at the extreme position B. maximum at the equilibrium C. minimum at the equilibrium D. same at all position 31. Velocity of sound in CO_2 is less than in hydrogen because B. CO_2 is a compound and hydrogen is an A. CO_2 is heavier than hydrogen element C. CO_2 is more soluble in water D. CO₂ can be more easily liquefied

32. The velocity of sound in air at room temperature is 110 m/sec. The length of the wave			
•	ng fork at frequency 275		0
A. 0.4 m	B. 100 m	C. 825 m	D. 1375 m
33. The temperature a	t which velocity of sound	l in air is double its veloo	city at 0°C is
A. 435°C	B. 694°C	C. 781°C	D. 819°C
34. Static electricity is			
A. induction	B. friction		
C. both induction and	D. none of the above		
friction			
35. Surface charge de	nsity on a pear shaped co	nductor is	$\mathbf{\wedge}$
A. maximum in the m	1	B. maximum near the	
C. maximum near the	broad end	D. equal throughout th	e surface
		C	
	uated at a certain distance		
-	If the distance of the cha	arge is doubled, the force	e acting on the charge will
be			
A. 2 <i>F</i>	B. <i>F</i> /2	C. <i>F</i> /4	D. <i>F</i> /8
37. A piece of fuse wi	re melts when the curren	t is 5 A. The energy prod	luced then is 1 J/s. The
resistance of the fuse			
A. 0.04	B . 0.1	C. 0.5	D. 10
38. The gravitational	force between two point 1	masses m_1 and m_2 at sepa	tration r is given by
$F = (m_1 m_2)/r^2$ Then co	onstant K		
A. depends on system		B. depends on medium	h between masses only
C. depends of both ma	asses and units	D. none of these	-
	and another of germaniu	m	
are cooled from room	temperature to 80 K. The	2	
resistance of	5		
A. each of them	B. each of them		
increases	decreases		
	nd D. germanium increase	es	
0	and copper decreases		~
	couple, the temperature o		C, while the neutral
_	What will be the temperat		5 53500
A. 420°C	B. 425°C	C. 520°C	D. 525°C
		1:66	
-	ed or absorbed. The effec	-	current is passed through
,			D. Joula offect
A. Peltier effect	B. Seebeck effect	C. Thompson effect	D. Joule effect
42 A storage battery	is to be charged from a d.	c supply which terminal	l of the battery be
connected to the posit	-	. suppry which termina	i or the bullery be
A. positive		negative	

A. positive B. negative

C. both positive and n	U	D. first negative and after positive	the lapse of 5 minutes
43. The force between two parallel wires can A. force of attraction		by the same by the	
C. no resultant force b	etween the wires	D. resultant force actir flow of wires	ng perpendicular to the
	electric charge produce d B. only a magnetic f D. none of the above	s ield	
		2V circuit containing a 2V and comes to zero. The ci C. diode	-
46. Ferromagnetic sub A. very high permeability a	lity and susceptibility	B. low permeability bu D. none of these	ut high susceptibility
47. The permeability of	of the paramagnetic sub	ostance is	
A. very large	B. very small	C. negative	D. small but more than 1
	subjected to a small fignetisation is proportion		
A. \sqrt{H} B. H	C. H^2 D. $1/\sqrt{H}$		
49. In a capacitance ci A. ω C	rcuit the resistance is B. $1/\omega C$	C. $1/\sqrt{\omega} C$	$D \sqrt{\omega} \ge C$
Α. ω C	D. 1/00 C	C. 17 V& C	DVWXC
	induction, the induced	e.m.f. is independent of	
A. change of flux C. number of lines of t	force	B. time D. resistance of the ce	lls
51. A coil of area A is kept perpendicular to a magnetic field B. If coil is rotated by 180° , then change in the flux will be			
A. BA	B. zero	C. 2BA	D. 3 <i>BA</i>
52. The displacementA. is increasing with tC. has assured a const53. Electromagnetic wA. are longitudinalwavesC. are produced by	ime ant value	B. is not decreasing war D. becomes zero e at	n the P.D. across its plates ith time

charges moving with speed in all media uniform velocity

54. The frequency 10^8 H	-			D 10 ¹² H
A. 10^{8} Hz	B . 10 ¹⁸ Hz		C. 10^{15} Hz	D. 10^{12} Hz
55. A concave mirror of focal length 15cm forms an image at a distance of 40 cm from it. The distance of the object from the mirror is				
A. 10 cm	B. 20 cm		C. 24 cm	D. 30 cm
56. Binoculars are made conveniently short by making use of right angled isosceles prism of glass. In a normal pair of binoculars, the number of prism is				
A. 1	B. 2		C. 4	D. 5
57. A ray incident of	-		C	
index $\sqrt{2}$ suffers m	inimum deviation	n. The angle	<u><u></u></u>	
of incidence is	G (0)		:20	
A. 0° B. 45°	C. 60°	D. 75°	0	
58. Two electron be magnetic field. The				cted separately to identical
A. 4 : 1	B. 1 : 2		C.1:4	D. 2 : 1
59. The ray used fo	or determining the		1	
A. α -ray	B. β -ray		C. γ -ray	D. X-ray
60. For the structur	al analysis of cry	stals X-ray a	re used because	
A. X-rays have way	velength of the or	der of the int	ter-atomic spacing	
B. X-rays are highl				
C. wavelength of X		of nuclear siz	ze	
D. X-rays are coher	rent radiation			
	2			
61. The ratio of the molar amounts of H_2S needed to precipitate the metal ions from 20 ml each of 1 M Cd (NO ₃) ₂ and 0.5 M CuSO ₄ is				
A. 2:1	B. 1:1		C. 1:2	D. indefinite
62. Among the foll	owing elements,	which one ha	as the highest value of	first ionization potential?
A. Argon	B. Barium		C. Cesium	D. Oxygen
63. Which of the following concepts best explains that o-nitrophenol is more volatile than p- nitrophenol?				
A. Resonance	B. Conjugat	tion	C. Hydrogen binding	D. Covalent bonding
64. Which of the following statements is false?A. Ionic compounds generally have low m.p.and b.p.B. Carbon tetrachloride is a non-polar molecule				

C. Anhydrous AlCl₃ is a covalent substance

B. O²⁻

A $A1^{3+}$

D. A molecule represents a more stable state as compared to individual atoms

65. The chemical species having same number of electrons in the outermost and penultimate shell is

C. Na^+

 $D. Cl^{-}$

66. The solution was prepared by dissolving 0.0005 mol of Ba (OH)₂ in 100 ml of the solution. If the base is assume to ionize completely, the pOH of the solution will be B. 12 C. 2 A. 10 D. unpredictable 67. In which of the following neutralization will the enthalpy of neutralization be the smallest? A. H₃PO₄ B. NaOH C. NaOH D. HCl with NaOH and with HCl with CH₃OOH NH₄OH 68. The pH of 10^{-8} M NaOH will be A. 6.96 B. 7.04 D. 8 C. 12.0 69. Gas deviates from ideal gas nature because molecules A. attract each other B. contain covalent bond D. are colourless C. show Brownian movement 70. Among the following reactions, the fastest one is A. precipitation of silver chloride by mixing silver nitrate and sodium chloride solutions B. burning of coal C. rusting of iron in moist air D. conversion of monoclinic sulphur to rhombic sulphur 71. When 5.0 g of BaCl₂ is dissolved in water to have 10^6 g of solution. The concentration of solution is A. 5M B. 5gmL^{-1} C. 2.5 ppm D. 5 ppm 72. The unit of electrochemical equivalent is C. gm./coulomb D. gm-ampere⁻¹ A. coulomb/gram B. gm-ampere 73. Adsorption increases when A. temperature remains B. temperature constant increases C. temperature D. none of the above decreases 74. The number of hours required for a current of 3.0 A to decompose electrically 18 g of water is A. 12 hours B. 24 hours C. 6 hours D. 18 hours 75. The number of electrons per second, which pass through a cross section of a copper wire carrying 10 -16 A, is A. $16 \times 10^{-2} \text{ e/s}$ B. 1.6 x 10⁻³ C. $60 \, \text{e/s}$ D. 625 e/s

	ng certain normality neut	ralizes exactly 1.0 g CaC	CO ₃ . The normality of
acid is A. 0.1 N	B. 1.0 N	C. 0.5 N	D. 0.01 N
77. The alkali metal us	sed in photoelectric cell is	S	
A. Cs	B. Fr	С. К	D. Rb
78. Calcium is extracted	ed from		
A. fused CaSO ₄	B. fused Ca ₃ (PO ₄) ₃	C. fused CaCl ₂	D. aqueous CaCl ₂ solution
79. SbCl ₃ upon hydrol	ysis yields		\sim
A. $Sb(OH)_3$	B. SbO^+	C. Sb ⁺³	D. None of the above
80. Which of the follow monomer molecule?	wing trioxides can exist a	is C)
A. SO_3 in B. TeO_3	C. SeO ₃ in D. SO ₃ in	. 0.	
gaseous state	all states solid state	X	
81. Pure chlorine is ob	tained		
A. by heating PtCl ₄			
	e of NaCl and MnO_2 with	h conc. H_2SO_4	
C. by heating MnO ₂ w D. by treating bleaching			
	wing gases is used in ver	y low temperature therm	ometers?
A. N_2	B. H ₂	C. Ne	D. He
83. Number of nucleon A. 4	ns in D_2 molecule is B. 1	C. 2	D. 3
A. 4	B. 1	C. 2	D. 5
84. There is no s-s bon		2	2
A. $S_2O_7^{2-}$	B. $S_2O_3^{2-}$	C. $S_2O_4^{2-}$	D. $S_2O_5^{2-}$
85. The ratio of C_p/C_v			
A. 1.66	B. 1.33	C. 1.99	D. 2.13
extraction of	ion method is used in the		
A. highly electropositive elemen	B. transition metals		
C. noble metals	D. highly electronegative		
	elements		
	xtracted from sea water i		
A. Mg	B. Au	C. Ca	D. Fe

88. The compound hav A. HgSO ₄	ing blue colour is B. PbSO4	C. CuSO ₄ .5H ₂ O	D. CuSO ₄
0	ving is known as 'Wol-fi	ramite'?	
A. $Na_2CO_3 + K_2CO_3$	B. FeWO ₄	C. SnO ₂	D. 98% pure Zinc
A. first decreases till th B. decreases regularly	ion series, the oxidation the middle of period and the in moving from left to right the middle of period and the correct	hen increases ght	
91. Which of the follow	ving properties of graphi	te and diamond are ident	
A. Density	B. Crystal structure	C. Atomic weight	D. Electrical conductivity
92. Which of the follow polymer?A. PAN B. PTFE	ving is an example of co- C. D. Buna-S Polythene	:20	
93. The reagent which	forms crystalline osazon	e derivative when reacte	d with glucose is
A. Hydroxylamine	B. Benedict solution	C. Fehling solution	D. Phenylhydrazine
94. To which class of d	lyes does phenolphthalei	n belong?	
A. Phthalein dyes	B. Triphenyl methane dyes	C. Nitro dyes	D. Azo dyes
95. Peroxo linkage is p A. H ₂ S ₂ O ₈	resent in B. H ₂ SO ₃	C. H ₂ S ₂ O ₇	D. H ₂ SO ₄
96. Tautomerism is exh A. RCH ₂ NO ₂	nibited by B. R ₃ CNO ₂	C. (CH ₃) ₂ NH	D. (CH ₃) ₃ CNO
A. chromatography	r purification, isolation a B. sublimation	C. crystallization	D. distillation
A. racemic mixture is f	optical activity when redu formed	B. spatial arrangement	
C. symmetry of the mo 99. In order to convert chlorobenzene, the reag	lecule is destroyed aniline into gents needed are	D. chirality of the mole	C
A. $Cl_2/AlCl_3$ B. Cl_2/CCl_3	C. 4 NaNO ₂ /HCl D. CuCl and CuCl		

100. Which of the following alcohol on dehydration with conc. H2SO4 will yield 2-butene?A. 2-methyl-2-propanol B. 2-methyl-2-butanolC. 2-propanolD. Sec. Butyl alcohol

101. A compound A has a molecular formula C_2Cl_3OH . It reduces Fehling solution and an oxidation gives a monocarboxylic acid B. It can be obtained by the action of chlorine on ethyl alcohol. A is

D. Monochloroacetic A. Chloral B. Chloroform C. Methyl chloride acid 102. Which of the following will yield Benzaldimine hydrochloride? A. benzonitrile and SnCl₂/HCl B. nitrobenzene and SnCl₂/HCl C. benzene and hydrazine D. hydrazine and HCl 103. Isopropyl alcohol is heated on a water bath with the suspension of bleaching powder. Which of the following products will be formed? C. Isopropyl chloride D. Trichloromethane A. Propene B. Ethanol 104. Which of the following compounds is least basic? A. $C_6H_5NH_2$ B. $C_2H_5NH_2$ C. CH₃NH₂ D. NH3 105. Iodine dissolves in KI solution due to the formation of A. I^+ C. I_{2}^{-} B. I⁻ D. I_3^- 106. Hydrogen sulphide exhibits B. basic properties A. acidic properties C. oxidising properties D. none of the above 107. White Phosphorus reacts with caustic soda. The products are pH_3 and NaH₂PO₂. This reaction is an example of A. oxidation D. neutralisation B. reduction C. oxidation and reduction 108. Ammonia solution dissolves fairly in B. PbCl₂ D. AgI A. Hg_2Cl_2 C. $Cu(OH)_2$ 109. Amongst the trihalides of nitrogen, which one is the least basic? A. NF₃ B. NCl₃ C. NBr₃ D. NI₃ 110. Among the various allotropes of carbon, C. lamp black is the A. diamond is the **B**. graphite is the D. coke is the hardest hardest hardest hardest 111. Bone charcoal is used for decolourising sugar because it A. reduces colouring matter B. oxidises colouring matter C. absorbs colouring matter D. none of the above 112. Tin (II) chloride is used as a C. A. mordant B. catalyst oxidising D. none of in dying the above agent

A. aluminium	s most prominent in B. boron	C. gallium	D. thallium
114. In the alumino th A. an oxidising agent	ermite process, aluminiu B. a flux	m acts as C. a reducing agent	D. a solder
115. The correct struc A. Hg ⁺	ture of mercurous ion is B. Hg ²⁺	C. Hg_2^+	D. Hg_2^{2+}
116. Which one of the A. Sodium chloride	e following is purely ionic B. Beryllium chloride		D. Carbon tetrachloride
	on heating gives a colour is passed through aqueou The compound A is		
A. NaHCO ₃	B. Na_2CO_3	C. $Ca(HCO_3)_2$	D. CaCO ₃
electrolysed using ine at the cathode and and	lium sulphate in water is rt electrodes. The product ode are respectively C. O ₂ , Na D. O ₂ , SO		
119. The metals occur	ring in the form of their o	compound in the earth's	crust are called
A. matters	B. minerals	C	D conque
A. matters	D. IIIIIerais	C. alloys	D. gangue
	mple of hydrogen peroxic)	
120. A commercial sa	C)	
120. A commercial sa strength is nearly A. 1%	mple of hydrogen peroxic	de is labelled as 10 volu C. 10%	me. Its percentage D. 90%
120. A commercial sa strength is nearly A. 1%	mple of hydrogen peroxic B. 3%	de is labelled as 10 volu C. 10%	me. Its percentage D. 90% $_0 - P_2 + P_4 - \dots$ is
120. A commercial satisfies the strength is nearly A. 1% 121. If $(1 + x)^n = P_0 + A$. $2^n \cos n\pi/4$ 122. If a, b, c and x ar	mple of hydrogen peroxid B. 3% $P_1 + P_2x + P_2x^2 + \dots + T_2$ B. 2 ^{n/2} cosn $\pi/4$ re real numbers, then x ² +	de is labelled as 10 volum C. 10% $P_n x^n$, then the value of P C. $2^{n/2} sinn\pi/4$ 2bx + c will be positive	me. Its percentage D. 90% $_0 - P_2 + P_4 - \dots$ is D. $2^n \operatorname{sinn} \pi/4$ if
120. A commercial satisfies the strength is nearly A. 1% 121. If $(1 + x)^n = P_0 + A$. $2^n \cos n\pi/4$ 122. If a, b, c and x ar	mple of hydrogen peroxid B. 3% $P_1 + P_2 x + P_2 x^2 + \dots + P_2 x^2$ B. 2 ^{n/2} cosn $\pi/4$	de is labelled as 10 volum C. 10% $P_n x^n$, then the value of P C. 2 ^{n/2} sinn $\pi/4$	me. Its percentage D. 90% $_0 - P_2 + P_4 - \dots$ is D. 2 ⁿ sinn $\pi/4$
120. A commercial satisfies the strength is nearly A. 1% 121. If $(1 + x)^n = P_0 + A$. $2^n \cos n\pi/4$ 122. If a, b, c and x ar	mple of hydrogen peroxid B. 3% $P_1 + P_2 x + P_2 x^2 + \dots + 1$ B. $2^{n/2} \cos n\pi/4$ e real numbers, then $x^2 + B$. $b^2 < c$	de is labelled as 10 volum C. 10% $P_n x^n$, then the value of P C. $2^{n/2} sinn\pi/4$ 2bx + c will be positive C. $b^2 > 4c$	me. Its percentage D. 90% $_0 - P_2 + P_4 - \dots$ is D. $2^n \operatorname{sinn} \pi/4$ if
120. A commercial satisfies the strength is nearly A. 1% 121. If $(1 + x)^n = P_0 + A$. $2^n \cos n\pi/4$ 122. If a, b, c and x and A. $b^2 > c$ 123. The one of the variable of t	mple of hydrogen peroxid B. 3% $P_1 + P_2 x + P_2 x^2 + \dots + T_3$ B. $2^{n/2} \cos n\pi/4$ we real numbers, then $x^2 + B$. $b^2 < c$ alues of $(-i)^{1/3}$ is B. $(-1/2)(\sqrt{3} + i)$ and $B = R \approx \{n\}$, where R	de is labelled as 10 volum C. 10% $P_n x^n$, then the value of P C. $2^{n/2} sinn\pi/4$ 2bx + c will be positive C. $b^2 > 4c$ C. $\pm (1/2)(\sqrt{3} + i)$	me. Its percentage D. 90% $_{0} - P_{2} + P_{4} - \dots$ is D. 2 ⁿ sinn $\pi/4$ if D. b ² < 4c

125. Cards are dealt one by one from a well shuffled pack until an ace appears. The probability that exactly n cards are dealt with before the first ace appears is

A. [4(51 - n)(50 - n)(49 - n)]/(13.51.50.49)B. 4/(52 - n)C. [48 - (n - 1)]/(52 - n)D. none of the above 126. A determinant is chosen at random from the set all determinants of order 2 with element 0 and only. The probability that the value of determinant chosen is positive, is A. 11/18 **B**. 11/14 C. 13/16 D. 3/16 127. The value of the | 1 - x | dx equals integral B. 2 A. 1 C. 4 **128.** The domain of the function f(x) = $\log_2(x^2/2)$ sin⁻¹ B. $[-1, 1] \approx \{0\}$ A. $[-2, 2] \approx \{0\}$ D. [-1, 1] 129. Lt $(1 - x) [(\tan \pi x)/2]$ equals $x \rightarrow 0$ B. $2/\pi$ A. $\pi/2$ D. $\pi + 2$ 130. The function f(x) = |x|/x; $x \neq 0$ and f(x)1; x = 0 is discontinuous at C. x = 2B. x = 1 A. x = 0D. x 131. If x = a (t - sint), y = a (t - cost), then d^2y/dx^2 is equal to A. $(1/4a)(\csc^2 t/2)$ B. $(1/4a)(\csc^3 t/2)$ C. - $[(1/4a)(\csc^2 t/3)]$ D. - $[(1/4a)(\csc^4 t/2)]$ 132. If x, y, and z are arithmetic, geometric, and harmonic means respectively of two distinct position numbers, then C. x < z < yB. x < y < zA. z < y < xD. x > z > y133. All the solutions of the equation $16xy + x^2 + y^2 - 8x - 8y - 20 = 0$ represents B. pair of straight lines C. a circle D. a parabola A. a straight line 134. The solution set of an inequality 5 - 15y > 125, $y \in R$ is B. $\{ y | y > 6 \}$ C. $\{ y | y < -8 \}$ D. $\{ y | y \in 8 \& y \in 9 \}$ A. $\{ y | y \in R \}$ 135. Unit vector in the xy-plane that makes an angle of 45° with the vector i + j and an angle of 60° with the vector 3i - 4j is C. √2i A. i B. 2i D. none of the above 136. Given the line (x + 3)/2 = (y - 4)/3 = (z + 5)/2 and the plane 4x - 2y

-z = 1, then the line is A. perpendicular to the B. inclined with 60° to plane the plane C. inclined with 45° to D. parallel to the plane the plane Lt $[x \sin x + \log (1 - x)^{x}]/x^{3}$ 137. equals $x \rightarrow 0$ **B**. - 1/2 C. 1/4 A. 1/2 D. - 1/4 138. Four numbers are such that the first three are in A.P., while the last three are in G.P. The first number is 6 and common ratio of G.P. is 1/2, then the numbers are A. 2, 4, 6, 8 B. 6, 4, 2, 1 C. 6, 4, 3, 2 D. 6, 9, 3, 1 139. If the arithmetic and geometric mean of two distinct positive numbers are A and G respectively, then their harmonic mean is B. A/G^2 C. G^2/A D. $\sqrt{A/G}$ A. A/\sqrt{G} 140. The area bounded by the straight lines y = 1, x + y = 2, and x - y = 2 is **B**. 11/2 A. 11 D. 2/11 141. The value of $5^2 \log_{25} 5$ is A. 4 B. 5 C. 6 D. 8 142. If the angle of intersection between the curves $y = x^2$ and $y^2 = 4x$, then the point of intersection is A. (0, 0) **B**. (0, 1) C. (1, 0) D. (1, 1) 143. The pair of points which lie on the same side of the straight line 3x - 8y = 7 is B. (0, 1), (3, 0) A. (-4, -3), (1, 1) C. (-1, -1), (3, -7) D. (-1, -1), (3, 7) 144. The equation $x^2 - 8x + 16 = 0$ has A. coincident root B. imaginary root C. unequal root D. none of the above 145. If b = 3, c = 4 and B = $\pi/4$, then the number of triangles that can be formed is A. 1 B. 2 C. 3 D. none of the above 146. Lim $(\tan m\theta)/m$ equals $\theta \rightarrow 0$ \mathbf{C} θ^2 D. 0 Α. θ **B**. - θ 147. The range of the function f(x)[1 - x] - 1 = 0 is A. a set of irrational B. a set of rational numbers numbers

C. a set of real numbers D. none of the above

148. If a, b, c are in A.P., then A. 1/(a - b) = 1/(b - c) B. (a - b)/(b - c) = 2C. (a - c)/2 = bD. b + c = 2a149. The sum of all numbers greater than 1000 formed by using the digits 1, 3, 5, 7, no digit repeated in any number is A. 106656 B. 101276 C. 82171 D. 81273 150. The vertices of a triangle are represented by the complex numbers 4 - 2i, -1 + 4i, and 6 + i, then the complex number representing the centroid of a triangle is A. 3 + iB. 3 - i C.9 + i9 - i 151. $\sin(\pi + \theta) \sin(\pi - \theta) \csc^2 \theta$ is equal to C. 1 D. -1 A. sin θ B. $\cos \theta$ 152. In a triangle ABC, $[(b^2 - c^2)/a]\cos A + [(c^2 - b^2)/a]\cos B$ $-b^{2})/a$ cos C is equal to C. $a^2b^2c^2$ A. abc B. 1/abc D. 0 153. If ex-radii r₁, r₂, r₃ of a triangle ABC are in H.P., then the sides of the triangle are in D. none of A. A.P. B. G.P. C. H.P. the above 154. The vertices of a triangle are A(6, 4), B(4, -3) and C(-2, 3), which one of the following is true for triangle ABC? B. an equilateral C. a right angled A. an isosceles triangle D. none of the above triangle triangle 155. The length of tangent from (5, 1) to the circle $x^2 + y^2 - 6x + 4y + 3 = 0$ is A. 7 **B**. 14 C. 28 D. 36 + 3j - 2k, then the projection of b on a 156. If a B. 5/√29 C. $3/\sqrt{29}$ D. 2 A. $2/\sqrt{29}$ 157. Which one is true? A. P(A/B) = P(A) +B. P(A/B) = P(A) -C. P(A/B) =D. P(A/B) = P(A) -P(AB) P(B)[P(AB)]/P(B)P(B/A)158. If $y = (1/2)[\log (\tan x)]$, then the value of dy/dx at $x = \pi/4$ is **B**. 0 C. -1 A. 1 $D.\infty$ 159. If $y = (tanx + secx)^x$, then dy/dx is equal to A. x secx B. y secx C. m secx D. mxy

160. The equation $2x^2 + 3x + 1 = 0$ has A. rational root B. irrational root C. equal root D. none of the above 161. A bag contains 6 red, 5 green, and 7 white balls. The probability of choosing a red or a white ball is C. 13/18 A. 1/3 **B**. 11/13 D. 3/8 162. $\int (x + 2)/(x + 4) dx$ is equal to A. $1/2[\tan^{-1}(x-2/x)] + B. \tan^{-1}x + c$ C. $1/2[\tan^{-1}(2/x)] + c$ D. none of the above с 163. The length intercepted on the line 3x + 4y + 1 = 0 by the circle $(x - 1)^2 + (y - 4)^2 = 25$ is **B**. 4 A. 3 C. 5 D. 6 164. The period of the function $\cos [(3/5)\alpha] - \sin [(2/7)\alpha]$ is B. 10π C. 70π Α. 7π D. 3π 165. The minimum value of x^{x} is attained when x is equal to $C. e^2$ A. - e B. + eD. 1/e 166. If a, b, c and u, v, w are complex numbers representing the vertices of two triangles such that c = (1 - r)a + rb and w = (1 - r)u + rv, where r is a complex number, then the two triangles are C. equal in D. equal Β. A. similar congruent area bases 167. In a triangle ABC, if r and R are the in-radius and circum-radius respectively, then (a cos A $+b\cos B + c\cos C)/(a+b+c)$ is C. R^2/r D. r^2/R A. r/RB. R/r168. $\int \left[\frac{x + \sin x}{1 + \cos x} \right] dx$ is equal to A. $x \tan(x/2)$ B. $x \tan(x/2) + c$ C. $\log (1 + \cos x) + c$ D. $x \log(\cos x) + c$ 169. The differential coefficient of $f \left[\log(x) \right]$ when $f(x) \log x$ is A. x log x B. $x/(\log x)$ C. $1/(x \log x)$ D. $(\log x)/x$ 170. If $x = 9 \sin 2\theta (1 + \cos 2\theta)$ and $y = b \cos 2\theta (1 - \cos 2\theta)$, then the value of dy/dx is D. ab tan θ A. (b tan θ)/a B. $a/(b \tan \theta)$ C. (a tan θ)/b 171. The number of solution of the equation $(\tan x + \sec x = 2 \cos x)$ lying in the interval $(0, 2\pi)$ is A. 0 C. 2 **B**. 1 D. 3 172. If θ and ϕ are angles in the first quadrant such that tan $\theta = 1/7$ and $\sin \phi = 1/\sqrt{10}$, then

A. $\theta + 2\phi = B$. $\theta + 2\phi = C$. $\theta + 2\phi = D$. $\theta + 2\phi = D$ 45° 90° 60° 30° 173. If a cos 2θ + b sin 2θ = c has a and b as its solution, then the value of tan α + tan β is A. (c + a)/2bB. 2b/(c + a)C. (c - a)/2bD. b/(c + a)174. The perimeter of a certain sector of a circle is equal to the length of the arc of a semi-circle having the same radius, the angle of the sector is A. 65° 24' B. 64° 24' C. 63° 24' D. 62° 24' 175. The value of $\tan^{-1}x + \cot^{-1}x$ is A. $\pi/3$ **B**. π/6 C. $2\pi/3$ 176. If a circle cuts a rectangular hyperbola $xy = c^2$ in A, B, C, D and the parameters of these four points be t_1 , t_2 , t_3 and t_4 respectively, then A. $t_1 t_2 = t_3 t_4$ B. $t_1 t_2 t_3 t_4 = 1$ C. $t_1 = t_2$ D. $t_3 = t_4$ 177. If the normal to $y^2 = 12x$ at (3, 6) meets the parabola again in (27, -8) and the circle on the normal chord as diameter is A. $x^2 + y^2 + 30x + 12y - B$. $x^2 + y^2 + 30x + 12y$ $\begin{array}{ll} 27=0 & +\ 27=0 \\ C.\ x^2+y^2-30x-12y- & D.\ x^2+y^2-30x+12y \end{array}$ 27 = 027 = 0

178. If the normal any point P on the ellipse cuts the major and the minor axes in G and g respectively and C be the centre of the ellipse, then

A. $a^{2} (CG)^{2} + b^{2} (Cg)^{2} = (a^{2} - b^{2})^{2}$ C. $a^{2} (CG)^{2} - b^{2} (Cg)^{2} = (a^{2} + b^{2})^{2}$ D. none of the above

179. The point of intersection of the tangent at the end of the latus rectum of the parabola $y^2 = 4x$ is

180. If a, b, c are distinct positive numbers, then the expression (b + c - a)(c + a - b)(a + b - c) - abc is

A. positive

C. both negative and positive

B. negative D. none of the above